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We apply an analytical signal analysis to strange nonchaotic dynamics. Through this technique it is possible
to obtain the spectrum of instantaneous intrinsic mode frequencies that are present in a given signal. We find
that the second-mode frequency and its variance are good order parameters for dynamical transitions from
quasiperiodic tori to strange nonchaotic attractors �SNAs� and from SNAs to chaotic attractors. Phase fluctua-
tion analysis shows that SNAs and chaotic attractors behave identically within short time windows as a
consequence of local instabilities in the dynamics. In longer time windows, however, the globally stable
character of SNAs becomes apparent. This methodology can be of great utility in the analysis of experimental
time series, and representative applications are made to signals obtained from Rössler and Duffing oscillators.
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I. INTRODUCTION

In quasiperiodically driven nonlinear dynamical systems,
strange nonchaotic dynamics �1,2� usually occurs as transi-
tional behavior between regimes of �strange� chaotic motion
and quasiperiodic tori: namely, nonchaotic and nonstrange
behavior �3�. From the time when such attractors were ex-
plicitly described �4�, a number of theoretical studies have
addressed different aspects such as quantitative measures to
characterize them and the different bifurcations that create
strange nonchaotic attractors �SNAs� �5–7�.

There are some subtleties involved since SNAs are geo-
metrically strange, typically fractal, objects on which the
largest nontrivial Lyapunov exponent is nonpositive. Some
structural features are thus shared with strange chaotic attrac-
tors while some dynamical features are shared with regular
orbits. The number of experimental studies where SNAs
have definitively been identified are, however, few �8,9�. De-
tecting the transition from the regular orbits—tori—to SNAs
is relatively easy via any measure which probes the geo-
metrical structure of the attractors. For example, the fractal
dimension is integral for tori, while it has a noninteger value
for SNAs. Fluctuations in finite-time Lyapunov exponents
also capture the geometric properties of attractors and have
been used to detect the transition from tori to SNAs �6,10�.
The transition from SNAs to chaos is, likewise, easily de-
tected through the Lyapunov exponent itself which crosses
zero, changing from negative to positive.

Detecting the nature of the motion from experimentally
measured time series can be difficult. Obtaining a bound on
the fractal dimension is possible, but this does not differen-
tiate between chaotic and nonchaotic attractors. On the other
hand, simple methods usually are not able to accurately es-

timate a negative Lyapunov exponent from an aperiodic time
series. Transitions in the dynamics, particularly from SNAs
to chaos, are thus quite difficult to detect. Earlier studies �11�
have pointed out that the Lyapunov exponent increases lin-
early and its fluctuations show a small linear jump at the
transition �6�. More recently, Ngamga et al. �12� have used
recurrence analysis to identify the transitions. However, this
method is nonadaptive, in the sense that it is necessary to
preset some parameters prior to performing the analysis with
the time-series data.

In this paper we use analytical signal analysis �ASA� �13�
to address some of these issues. The analytic signal analysis
was first developed by Gabor �14� in his study of optical
holography in order to define a complex signal with a clear
physical meaning. We demonstrate here that the ASA—and
in particular, measures based on the second largest frequency
of the signal and its variance—is especially suited to detec-
tion of the transition from SNAs to chaos. Further, we also
study the phase fluctuations of the signal �15� which also
help to differentiate between SNAs and chaotic attractors by
helping identify features corresponding to local instability
and global stability.

A major motivation for this work is to develop tools for
detection of SNAs from time-series data alone. An outline of
the ASA method is first discussed in the following section,
Sec. II. This is then applied to the model Rössler and Duffing
oscillator systems in Sec. III. We discuss the results in Sec.
IV. The paper concludes with a summary in Sec. V.

II. ANALYTICAL SIGNAL ANALYSIS

We briefly recall the essential features of the analytical
signal analysis proposed by Gabor �14� that has proven to be
very useful in the analysis of signals that are not periodic
�11,15�. Given a signal x�t�, the amplitude A and phase � of
the so-called analytical signal ��t� is determined through the
equation

��t� = x�t� + ix̃�t� = A�t�ei��t�, �1�

with
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x̃�t� =
1

�
P.V.��

−�

� x�t��
t − t�

dt�� , �2�

“P.V.” denoting the Cauchy principal value in the above Hil-
bert transform. The quantities

A�t� = �x�t�2 + x̃�t�2

and

��t� = tan−1�x̃�t�/x�t��

define the amplitude and phase of the analytical signal.
When x�t� is aperiodic �see Figs. 1�a� and 1�b��, the rate

of rotation about a fixed point of its analytical signal—
namely, the frequency ��t�= �̇�t�—is not constant. Indeed,
the nature of its variation reveals much about the nature of
the dynamics. Thus, it is necessary to subject the signal to
further analysis. A method that has been gaining increasing
attention �11,15,16� is the so-called empirical mode decom-
position �EMD� �13� which generates a collection of intrinsic
mode functions �IMFs� through a process termed sifting.
Each of these intrinsic modes is a pure rotation in the com-
plex plane, each with a properly defined frequency.

EMD is carried out as follows.
�i� Connect all the local maxima of the signal I�t� through

a cubic spline to get Imax�t�. Similarly, obtain and connect all
the local minima to get Imin�t�.

�ii� Compute the mean of maxima and minima at each
point and subtract it from the signal to get �I�t�	 I�t�
− �Imax�t�+ Imin�t�� /2.

�iii� Verify that �I�t� corresponds to a proper rotation, else
iterate steps �i� and �ii� until it does. The resulting signal is
the first intrinsic mode, denoted by C1�t�.

�iv� Subtract C1�t� from the signal I�t�	 I�t�−C1�t� and
repeat steps �i�–�iii� on this new I�t� to obtain second intrin-
sic mode C2�t�.

�v� Continue this sifting procedure, until the mode CM�t�
shows no apparent variation �for more details see Ref. �13��.

In the next section, we apply this analysis to time-series
data from SNA dynamics.

III. STRANGE NONCHAOTIC DYNAMICS

We generate strange nonchaotic dynamics in the quasip-
eriodically driven Duffing oscillator �17�,

ẋ = y ,

ẏ = − 0.1y + �1 + R�0.3 cos t + cos �t��x − x3, �3�

where R is the forcing amplitude and the frequency � is the
inverse of the golden mean ratio ��5−1� /2. Nominally these
equations model buckled beam oscillations �18� and the sys-
tem has been experimentally realized as a quasiperiodically
driven magnetoelastic ribbon. Indeed, this provided one of
the earliest demonstrations of strange nonchaotic dynamics
in a physical system �19�.

The autonomous system has fixed points �0,0� and
���1.3R+1.0,0�. A typical strange nonchaotic trajectory in
the driven system is shown in Fig. 1�a� �20�, and it is clear
that the system oscillates around these three fixed points.
Since there is no unique center of rotation, it is not possible
to define the phase of oscillation in �x ,y ,z� coordinates and it
is necessary to use the EMD.

Another system we consider is the Rössler oscillator �21�
with quasiperiodic parameter modulation,

ẋ = − y − z ,

ẏ = x +
y

10
�	�cos t + cos �t� + 1� ,

ż =
1

10
+ z�x − 14� , �4�

where � is again taken to be the inverse golden mean ratio.
In contrast to the Duffing system, there is a proper sense of
rotation around the fixed point of the autonomous system,
and thus a phase could be approximately defined as
�� tan−1 y /x. A typical trajectory of the system is shown in
Fig. 1�b�.

The IMF analysis is presented in Fig. 2 where the original
signal along with the eight intrinsic modes generated from
EMD process for the Duffing oscillator is plotted. Summing
the eight IMFs essentially reconstructs the original signal
with almost no residue �see Fig. 2�j��. The phases ��t� of
these IMFs are obtained by Hilbert transformation, from
which the average rotation frequencies are determined. The
first mode has the largest frequency, and for higher modes,
the frequencies decrease monotonically.

In Figs. 1�c� and 1�d�, the analytic signal obtained by
Hilbert transformation of the first IMF is plotted for trajec-
tories of Duffing and Rössler oscillators: the rotation in the
complex plane is now clearly evident. We also compute the
largest Lyapunov exponent along with its variance for the
above two dynamical systems as a function of respective
parameters, and the results are shown in Fig. 3�a� �left panel�
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FIG. 1. Plot of x vs y for the forced �a� Duffing oscillator at R
=0.39 and �b� Rössler system at 	=0.05. Plot of Ir vs Iimg for the
first IMF obtained by EMD of the trajectories in the �c� forced
Duffing and �d� Rössler systems, respectively.
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for Duffing and Fig. 3�b� �right panel� for Rössler systems.
Earlier studies have used the variance in finite-time
Lyapunov exponents as an order parameter for detecting the
transition from torus to SNA �10�. The transitions from torus
�T� to SNAs and from SNAs to chaos C are indicated by
vertical dotted lines.

IV. RESULTS AND DISCUSSION

The Poincaré sections of typical SNAs and “nearby” cha-
otic attractors—as shown in Fig. 4, for example—can hardly
be distinguished. Therefore, a measure which detects SNAs
and distinguishes them from strange chaotic attractors in a
system is desirable.

We apply the methodology outlined above to the two
model systems to identify differences in the phase dynamics
between SNAs and chaos. To do this, we generate several
time series for different parameter values in both the sys-
tems. We applied EMD method to these signals �of typical
length 2
105� to extract the two largest frequency modes
from each time series. First the analytic signal was obtained
by using the Hilbert transformation. From this, the phase and
average instantaneous frequencies—say, �i—were deter-
mined. By repeating the procedure for N=104 uniformly dis-
tributed random initial conditions, we compute the average
frequency, �=
i=1

N �i and its variance, ��
2 =�−
i=1

N �i
2, and

examine their variation as a function of the parameters R and
	 in the two systems.

A. Transitions across SNAs

For both model systems, the first frequency �averaged�
remains nearly constant in the nonchaotic regime and does
not show any change at the transition from torus to SNAs.
The variance of the first frequency shows a similar behavior
and does not give any indication of this transition. In con-
trast, the second largest frequency shows a steep increase
when the dynamics changes from torus to SNA in both the
systems; see Figs. 3�c� and 3�d�. In the Duffing oscillator, the
rise is at R�0.386 and for the Rössler oscillator at 	�0.028,
which are in agreement with the transition values determined
from the variance in Lyapunov exponents as well �10�. The
second mode is thus sensitive to the dynamical transition
from torus to SNA.

At the SNA-to-chaos transition, the variance of the
second-mode frequency shows a steep rise. This matches the
point when the largest Lyapunov exponent becomes positive
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FIG. 2. �Color online� �a� Signal S for Duffing oscillator for R
=0.405. �b�–�i� Eight successive IMFs �C1−C8� for the signal S. �j�
Sum of the above eight IMFs �Cadd� �black� with its residual �gray,
red online� after EMD.
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FIG. 3. �Color online� Left panel: forced Duffing oscillator.
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FIG. 4. Plot of ��t��mod 2�� vs y for the forced Duffing oscil-
lator with �a� R=0.395 �SNA� and �b� R=0.405 �chaotic attractor�.
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as can be seen in Figs. 3�e� and 3�f�. For the Duffing system
this occurs at about R�0.398 and for the Rössler oscillator
at 	�0.06.

B. Statistics of the frequency distributions

It has earlier been observed �11,16� that there is a large
fluctuation in the frequency of the second IMF when the
dynamics is chaotic as compared to the case where the mo-
tion is quasiperiodic. It would, therefore, be interesting to
study the behavior of fluctuations in the frequency of the
second IMF as the dynamics changes from regular to SNAs
and from SNAs to chaos. The results are shown in Fig. 5 for
both the forced Duffing and Rössler oscillators. In Fig. 5�a�,
R=0.38, 0.391, and 0.401 correspond to torus, SNA, and
chaotic motions, respectively, for the Duffing system. The
distribution is sharper in case of torus and SNA than it is for
chaotic motion, offering a simple measure for distinguishing
between them. Similar behavior is evident for the Rössler
system as shown in Fig. 5�b� where 	=0.01, 0.05, and 0.16
correspond to torus, SNA, and chaotic motions, respectively.

C. Characteristics of SNAs and chaotic attractors

Along a trajectory, the local phase variable fluctuates as a
function of time and depending on the nature of the
dynamics—chaotic or nonchaotic—has a characteristic dis-
tribution. Figure 6 shows the fluctuations in phase for a SNA
time series and a chaotic time series for the Rössler system.
From this it is clear that the phase dynamics for SNAs is
regular while that for chaos is irregular. To quantify these
fluctuations, we calculate the Hurst exponent �22� of the time

series by a windowing method as follows �15�.
To examine the nature of phase fluctuations in SNAs and

chaos, we calculate the Hurst exponent �15,22,23� from the
time series by generating a time series of 500 000 points
corresponding to a given parameter value and applying the
EMD method to sift out the largest frequency IMF from the
time series. Then we derive its analytic signal by Hilbert
transformation and obtain the phase at each time. The slope
of this curve gives the average frequency. The fluctuations in
phase about the average frequency are then plotted as a func-
tion of time.

We fix the window size N and find the absolute value of
the difference in the phase fluctuation at time t+N and
t—namely, ���1�t��	���1�t+N�−��1�t��—for each time t.
We calculate the average of this quantity, ����1�t��
. By
changing the window size N, we obtain the corresponding
value of ����1�t��
 and plot log�����1�t��
� versus log N. �All
logarithms are in base 10.� The Hurst exponent of the time
series is the slope of the linear region of this curve. Figures
7�a� and 7�b� show the plot of log�����1�t��
� versus log N
for four different parameter values of the two systems corre-
sponding to Duffing and Rössler systems, respectively. For
shorter windows, SNAs and chaos behave similarly, initially
rising linearly. The slope of the linear region is same for both
SNAs and chaos, implying equal value of Hurst exponent.
However, for longer windows the slope vanishes for SNAs,
implying that the Hurst exponent is zero while for chaotic
attractors the linear trend continues with same or different
slope, implying a finite Hurst exponent.

In order to explain this different behavior between SNAs
and chaos, we use finite-time Lyapunov exponent analysis
which has been studied in a number of physical situations
�24�. Although the Lyapunov exponents are global or
asymptotic quantities, it is instructive to examine the distri-
bution of Lyapunov exponents over finite-time segments �of
length N� along a given trajectory. If the underlying attractor
is chaotic but nonuniform, the local Lyapunov exponent �LE�
can be negative within a finite-time interval. Similarly, on a
nonchaotic trajectory the local LE can take positive values
over finite-time intervals �25,26�. This gives a realization that
local Lyapunov exponent statistics have characteristic forms
depending on the nature of the attractors, and they may pro-
vide useful dynamical characterization of the state of a sys-
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tem. The plot of variance in finite time Lyapunov exponents
of the two systems is shown in Figs. 7�c� and 7�d� for the
parameter values of Figs. 7�a� and 7�b�. The variance de-
creases as N increases and then becomes almost zero at
log N�2.5, the point where crossover in scaling happens in
a plot of log�����1�t��
� versus log N for SNA dynamics.

Thus for SNAs, although the asymptotic Lyapunov expo-
nent is negative, because of its fractal geometry, there are
significant contributions from positive finite-time Lyapunov
exponent as indicated by nonzero variance. For small time
windows the local dynamics on SNAs is essentially chaotic,
and this contributes to the initial linear rise in plot of

log�����1�t��
� versus log N for both SNAs and chaos. How-
ever, for sufficiently large time windows the variance in the
finite-time Lyapunov exponent becomes zero and the curve
shows saturation for SNAs since they are globally stable. For
chaos, the curve keeps rising, indicating their global instabil-
ity. This technique of studying the phase fluctuation dynam-
ics can, therefore, be used as a diagnostic to detect whether
the given time-series data is chaotic or from an SNA.

V. SUMMARY

In the present paper, we have applied an analytical signal
analysis to study dynamical transitions in quasiperiodically
driven nonlinear dynamical systems. The decomposition is
on the basis of local characteristic time scales within the data
and is, therefore, suitable when the data are nonstationary as
well. Via the Hilbert transformation, the IMFs yield instan-
taneous frequencies, which makes it possible to examine the
different characteristic time scales embedded in the data.
This scheme is adaptive and therefore highly efficient. Re-
sults from two model systems suggest that the second largest
frequency and its variance act as a good measure for the
detection of the transition from tori to SNAs and from SNAs
to chaos, respectively.

Strange nonchaotic attractors are an important example of
stable nonperiodic motion, and there have been various sug-
gestions as to their potential importance in natural systems
�1,27� as well as in applications �28�. The ASA technique
outlined here can be of considerable utility in the detection
as well as characterization of experimental time series since
there are few methods that can reliably compute negative
Lyapunov exponents in aperiodic time-series data �29�.
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